Introduction

This is a brief introduction to the process of casting a horoscope roughly following the section on casting a horoscope in the 2005 version of Topics In Astrology. It is written much after that series of talks was offered but all of the tables and handouts given at that time are included and clairified in this documentation. This will be a tedious, step by step filling out of a Horoscope Data Sheet.

Everything is provided at no cost; however, if you plan to do more horoscopes you will have to purchase a tables of houses and an ephemeris for each year that contains a birth date and time for which you wish to cast a horoscope. The tables of houses lasts for a lifetime and ephemerides are sold for single years or in collections up to a century. Both of these books can be purchased at the following address:

The Rosicrucian Fellowship
2222 Mission Avenue
Oceanside, California 92057

The following will be the order of the steps of the process:
01 This introduction
02 Blank Horoscope Data Sheet (front view)(usable for documentation)
03 Blank Horoscope Data Sheet (back view)(usable for documentation)
04 Horoscope Data Sheet with pertinent birth data entered (back view)
05 Horoscope Data Sheet with pertinent birth data entered (front view)
06 Explanation of times used in casting a horoscope
07 Explanation of times used in casting a horoscope (continued)
08 Explanation of times used in casting a horoscope (continued)
09 Explanation of times used in casting a horoscope (continued)
10 Diagrams of longitude, latitude and approximate time zones in the USA
11 Diagram of all symbols used in casting
12 Diagram of houses with rough meanings
13 Ephemeris page for obtaining siderial time
14 Calculate True Local Time (back view)
15 Enter True Local Time (front view)
16 Calculate Siderial Time (back view)
17 Enter Siderial Time (front view)
18 Left Tables of Houses Page - for finding house cusps
19 Enter house cusps (front view only)
20 Calculate Greenwich Mean Time (back view)
21 Enter Greenwich Mean Time (front view)
22 Tables of Proportional Logarithms
23 Tables of Proportional Logarithms
24 Calculate Planetary Positions (completed back of sheet)
25 Table for Entering Planetary Positions
26 Enter Planetary Positions
27 Fill in Tables (completed horoscope)

Name	Birth Date	. Hour	$\begin{aligned} & \text { A.M. } \\ & \text {.P.M. } \end{aligned}$
Birthplace	Lat.	. Long.	

TRUE LOCAL TIME

Birth Hour according to Standard Time
(If Daylight Saving Time in effect, subtract one hour)
Degrees birthplace is East or West of Standard Time Meridian in use at birth
Multiply this number of degrees by 4 minutes, equals
(Add if birthplace is East of this Meridian
Subtract if birthplace is West of this Meridian)
Gives True Local Time (T.L.T.) of Birth

SIDEREAL TIME

Sidereal Time (S.T.) at Greenwich for ncon previous to T.L.T. of birth
Correction of 10 seconds for each 15 degrees of Longitude (10/15 or $2 / 3 \times$ Long.)
(Add if West Longitude. Deduct if East Longitude)
Interval between previous noon and true local time of birth
Add correction of 10 seconds per hour of interval
Gives Sidereal Time (S.T.) at birthplace at birth hour
Nearest S.T. in Tables of Houses

GREENWICH MEAN TIME

True Local Time of Birth
Degrees East or West of Greenwich
Multiply this number of degrees by 4 minutes, equals
(Add, if West Longitude. Deduct if East Longitude)
Gives Greenwich Mean Time (G.M.T.)
Interval to nearest noon
Logarithm for this interval (Permanent Logarithm)

POSITIONS OF THE PLANETS

	$\begin{gathered} \odot \\ \text { sun } \end{gathered}$	$\begin{gathered} f \\ \text { VENUS } \end{gathered}$	$\begin{gathered} \wp \\ \text { MERCURY } \end{gathered}$	$\begin{gathered} D \\ \text { MOON } \end{gathered}$	$\begin{gathered} \hat{\gamma} \\ \text { MARS } \end{gathered}$	$\begin{aligned} & \text { SATURN } \\ & \vdots \end{aligned}$
Sign						$\begin{aligned} & \text { JUPITER } \\ & 24 \end{aligned}$
Coming Noon Position (after G.M.T.)						
Previous Noon Position (before G.M.T.)						URANUS 파
Travel in 24 hours						
Logarithm of Travel						$\begin{gathered} \text { NEPTUNE } \\ \Psi \end{gathered}$
Permanent Logarithm						$\begin{aligned} & \text { PLuto } \\ & \text { §o } \end{aligned}$
Sum of Logarithms						
Travel During Interval (Direct planets: add to previous noon position if G. M. T. is P. M.; deduct from coming noon position if G. M. T. is A. M. Retrograde Planets, reverse this rule.)						DRAGON'S head §
Positions of planets						

TRUE LOCAL TIME

Birth Hour according to Standard Time
(If Daylight Saving Time in effect, subtract one hour)
Degrees birthplace is East or West of Standard Time Meridian in use at birth
Multiply this number of degrees by 4 minutes, equals
(Add if birthplace is East of this Meridian
Subtract if birthplace is West of this Meridian)
Gives True Local Time (T.L.T.) of Birth
SIDEREAL TIME
Sidereal Time (S.T.) at Greenwich for ncon previous to T.L.T. of birth
Correction of 10 seconds for each 15 degrees of Longitude (10/15 or $2 / 3 \times$ Long.)
(Add if West Longitude. Deduct if East Longitude)
Interval between previous noon and true local time of birth
Add correction of 10 seconds per hour of interval
Gives Sidereal Time (S.T.) at birthplace at birth hour
Nearest S.T. in Tables of Houses

GREENWICH MEAN TIME

True Local Time of Birth
Degrees East or West of Greenwich
Multiply this number of degrees by 4 minutes, equals
(Add, if West Longitude. Deduct if East Longitude)
Gives Greenwich Mean Time (G.M.T.)
Interval to nearest noon
Logarithm for this interval (Permanent Logarithm)

POSITIONS OF THE PLANETS

	$\begin{gathered} \odot \\ \text { sun } \end{gathered}$	$\begin{gathered} f \\ \text { VENUS } \end{gathered}$	૪ MERCURY	$\begin{gathered} D \\ \text { MOON } \end{gathered}$	$\begin{gathered} \hat{\gamma} \\ \text { MARS } \end{gathered}$	$\begin{gathered} \text { SATURN } \\ \vdots \end{gathered}$
Sign						$\begin{gathered} \ldots \ldots \\ \text { JUPITER } \\ 2 \end{gathered}$
Coming Noon Position (after G.M.T.)						
Previous Noon Position (before G.M.T.)						$\begin{gathered} \text { URANUE } \\ \text { H } \end{gathered}$
Travel in 24 hours						
Logarithm of Travel						$\begin{gathered} \text { NEPTUNE } \\ \Psi \end{gathered}$
Permanent Logarithm						$\begin{aligned} & \text { PLUTO } \\ & \text { @ } \end{aligned}$
Sum of Logarithms						
Travel During Interval (Direct planets: add to previous noon position if G. M. T. is P. M.; deduct from coming noon position if G. M. T. is A. M. Rctrograde Planets, reverse this rule.)						$\begin{gathered} \text { dragon's } \\ \text { HEAd } \\ \delta \end{gathered}$
Positions of planets						

Horoscope Data Sheet Name . . Astrology Class Place . . Madison, Wisconsin Lat....43 ${ }^{\circ}$ North Long. . . 89° West Birth date $\begin{aligned} & \text { Month September } \\ & \text { Day } \\ & \text { Year . . } 2005 \ldots \ldots\end{aligned}$ Hr... 7. . Min... 3.2 . P.M. (Std. Time) Std Time
Daylight
Central

Cross out all time zones exccpt your own
True Local Time.
Calc. Sid. Time
Nearest Sid. Time
Greenwich Mean Time
Adj. Calc. Date

Simple Astrological Measurements

The horoscope is a two dimensional (flat) representation of the three dimensional space surrounding the earth, the heavens. Because of this and the conventions of convenience adopted by astrologers, the horoscope is as much a symbol as a graph. Thus casting a horoscope and understanding what it represents just in the physical sense is not easy.

The heavens are divided in three ways for astrological study and horoscope construction. They are the same heavens and only the frame of reference is changed because one frame of reference is good for one thing and none for another. So the same point in space can be noted with three different sets of coordinates.

We will be working exclusively with the intellectual zodiac, sometimes called the sign zodiac or the tropical zodiac, and not with the constellational zodiac or the patterns of fixed starts (constellational or sidereal astrology is a different system from what we will be studying). This means that we will be working with invisible divisions of the heavens and not with constellations that can be seen with the eye. The two zodiacs (intellectual and natural) are not currently aligned and that is a subject that we will address in a later talk about astrology and history. Observers of sign and constellational astrology have each compiled their data of human response to the cosmic environment and both seem to have derived valid conclusions about human behavior.

Signs are the divisions of the heavens along the ecliptic. Each sign is 30 degrees of celestial longitude measured from the point of the vernal equinox. The first 30 degrees of longitude are Aries etc. Obviously, 1 degree of Taurus is 31 degrees of Aries. The dimension of the heavens from the ecliptic toward the pole of the ecliptic is called astronomical longitude.

Houses are divisions of the heavens from the birthplace. There are various theories about how the heavens should be so divided by different geometric methods. We will be using the placidian method. The simplest way to picture houses (but not quite the mathematics we will be using) is to picture drawing a circle on the ground and breaking in into 12 equal parts with the spoke of the wheel that is at the 10 th house pointing straight south. Then picture each of those segments in three dimensions as lunes (i.e. like huge tangerine segments), where they meet the zodiac (ecliptic) are the cusps of the houses. The horizontal measure for houses is the theoretical horizon, i.e. the horizon through the center of the horizon and not the sensible horizon as seen with the eye. The other dimension or coordinate is not much used in astrology and is an altitude.

In the form of horoscope layout we are using the houses all look the same size but the numbers on the cusps (spokes) indicate that on the ecliptic they are unequal due to the obliquity of angle of the horizon to the the ecliptic. Some astrologers lay out the chart on the 360 degrees of the zodiac on the ecliptic and thus show uneven sizes of houses even though this is only seeing the zodiac with the mind's eye and now what on sees when looking with the physical eye. Choice of layout is a matter of personal preference.

Dividing the heavens according to the celestial equator and the north pole produces Right Ascension or Hour Angle measured in hours, minutes and seconds of time-space. If one laps the circle 24 hours of time-space can be subtracted, thus 25 hours, 13 minutes and 40 seconds of hour angle is identical to 1 hour 13 minutes and 40 seconds of hour angle. The dimension from the celestial equator toward the pole is called declination and is measured in degrees, minutes andseconds of north or south declination, sometimes abbreviated to + for north declination and - for south.

Astrological aspects which are measured along the ecliptic and they are the same no matter what house or sign system the astrologer may be using. Aspects are the most influential component of astrology and since they are common to all systems it is not surprising that all systems come to similar conclusions. The tolerance of influence of planets is aspect is called "orb of influence". The orb we will be using for aspects will be plus/minus 6 degrees
from geometric exactness. Cusps usually have 3 degree orbs and their influence is usually stronger in the forward direction of the zodiac.

Solar Time

Solar Time is obviously time measured according to the position of the sun.
However, because the earth moves at different velocities at different places in its orbit, the length of a solar day (noon to noon) is not constant. Since society requires a more constant time standard, Mean Solar Time, which is the average of all solar days in a year, has been instituted as a standard length of a day.

Further standardization was necessitated by the fact that every whole degree meridian of longitude has a noon that is four minutes different from the whole degree meridian next to it and having 360 different time zones would be far to complicated. Most of the world is set up in 15 degree time zones with zone standard meridians in the center of them. Most of the standard meridians are equally divisible by 15 . Thus Central Standard Time is roughly 7 and $1 / 2$ degrees on either side of the 90 th meridian. Some countries use weird meridians and some locations change time zones so it is a good idea to have a reference book to check before casing a chart. Indiana has constantly shifted its time zones with some areas being in CST and some in EST and on Indiana city was by law in CST but its residents wanted to be on EST so the town hall clock was set at CST and everybody set their watches to EST.

Daylight time varies from place to place and state to state (some countries at extreme latitudes have double summer time) and during the 2nd world war a daylight savings time was instituted all year to conserve energy for the war effort.

All of these time changes have been recorded and Microcosm Book Shop will give you information on time changes for free on request.

True Local Time (Local Mean Time)

The earth rotates on its axis once every 24 hours, i.e. from exact noon to exact noon.
Thus every point on the surface of the earth but the poles sweeps past:

> 360 degrees of space in 24 hours
> or 360 degrees of space in 1440 minutes
> or 1 degree of space every 4 minutes

Thus for every degree of space a location is east of the time standard meridian, it is 4 minutes ahead of standard time in what is called True Local Time or Local Meridian Time. And for every degree of space a location is west of the time standard meridian, it is 4 minutes behind the standard time in what is called True Local Time or Local Meridian Time.

Sidereal Time

Sidereal time is a measurement of both time and space.
Its origin is the point in space immediately behind the sun when it is exactly on the equator at the vernal equinox and it is always changing due to the precession of the equinox and other factors.

Sidereal time is marked of along the celestial equator in Right Ascension or Hour Angle because the units of measurements of 24 hours 0 minutes and 0 seconds.

However, sidereal time is measured on a mean sidereal day which is four minutes shorter than a mean solar day because from noon to noon the earth has progressed forward on degree and must turn one degree (4 minutes) farther to reach the noon point whereas a star at virtual infinity always takes just 24 hours to return to the meridian. Unfortunately hours, minutes and seconds of sidereal time are given the same names as in mean solar time.

The daily listing in the ephemeris for sidereal time is given for noon or midnight from Greenwich, England. We are using a noon ephemeris.

However since the place of birth is most likely east or west of Greenwich and the sidereal time for noon advances 4 minutes every day (or sweep of 360 degrees), a correction in the base sidereal time given in the ephemeris must be made for the amount of space the earth will have to rotate before the birth place is pointing to the point that the telescope at Greenwich was pointing at as noted in the daily listing.
[In east longitude the birth place has already passed the point of the reading to the correction must be subtracted instead of added as in west longitude.]

Every sweep of 360 degrees means a difference of 4 minutes of sidereal time and 360 degrees means a difference of 240 seconds of time
Therefore each 36 degrees of space means a difference of 24 seconds of time or $2 / 3$ times the degrees of space from Greenwich gives the correction in seconds.

Add if west longitude, subtract if east longitude.
In our case:
$2 "$ times 89 degrees $=178$ degree-seconds and 178 degree-seconds divided by 3 degrees= 59 seconds of correction.

Greenwich Mean Time is mean solar time at Greenwich, England for the time of birth at whatever location. It is sometimes called Universal Time or UT.

Any moment of time is the same moment of time everywhere only it is given different time names at different places depending on the relationship of the place to the position of the sun.

In short, GMT is what the clock on the wall in the observatory in Greenwich read at the time of birth.

In our case, the moment recorded was $6: 35$ p.m. CST (7:35 p.m. CDT) on Sept. 20, 2000 and that moment in Greenwich, England was 0:35 a.m. GMT on Sept. 21, 2000.

GMT is also called Universal Time and it is extremely close to what is called Ephemeris Time in the Nautical Almanac And American Ephemeris.

GMT is used for planetary calculations at a given moment. Since the planets are measured on the ecliptic, the local place of birth is irrelevant to the calculations of the planetary positions and GMT is the preferred, simplest time used in these calculations.

Diagram of Longitude and Latitude

Diagram of approximate United States Time Zones

Υ	Aries	\bumpeq	Libra
\succ	Taurus	m_{l}	Scorpio
II	Gemini	\nsim	Sagittarius
σ	Cancer	丹s	Capricorn
δ	Leo	\approx	Aquarius
m	Virgo	\notin Pisces	

Planets

\odot	Sun	ћ	Saturn	告	Uranus
¢	Venus	4	Jupiter	Ψ	Neptune
¢	Mercury	0	Mars	¢	Pluto
D	Moon				

The Aspects

\circ	Conjunction	0°	$*$	Sextile	60°	
\circ	Opposition	180°	\triangle	Trine	120°	
\square	Square	90°	$\\|$	Parallel	$2^{\circ} \mathrm{N} / \mathrm{S}$	

The Attributes

Fixed

The Elements

Water

Table of Planetary Powers

Planet

Dignity/Rules

\bigcirc
$\succ \bumpeq$
II mp
\%
Y \approx
$\left.\chi^{\prime}\right)$
$\uparrow m^{\prime}$
\approx
H
m

Detriment

\approx
$\uparrow m_{1}$
$\chi^{7}+$
is
$\sigma \Omega$
II 17
$\bigcirc \bumpeq$
Ω
TP
૪

Exaltation

Fall

Diagram of houses and table of rough meanings.

First House-The shape and condition of the body, early environment and childhood's home.

Second House-Finance.
Third House-Literature, the useful arts, practical intelligence, short journeys, brothers and sisters.

Fourth House-The home and conditions in old age.

Fijth House-Amusement, courtship, children and speculation.

Sixth House-Health, servants and labor.
Seventh House-Partnership, marriage, the fine arts and the public.

Eighth House-Inheritance, death.
Ninth House-Religion, philanthropy, idealism, justice and long journeys.

Tenth House-Profession, social position and ambition.

Eleventh House-Friends, hopes and wishes.
Twelfth House-Prisons, hospitals, sorrow and trouble.

Gives True Local Time (T.L.T.) of Birth

SIDEREAL TIME

Sidereal Time (S.T.) at Greenwich for ncon previous to T.L.T. of birth
Correction of 10 seconds for each 15 degrees of Longitude ($10 / 15$ or $2 / 3 \times$ Long.)
(Add if West Longitude. Deduct if East Longitude)
Interval between previous noon and true local time of birth
Add correction of 10 seconds per hour of interval
Gives Sidereal Time (S.T.) at birthplace at birth hour
Nearest S.T. in Tables of Houses

GREENWICH MEAN TIME

True Local Time of Birth
Degrees East or West of Greenwich
Multiply this number of degrees by 4 minutes, equals
(Add, if West Longitude. Deduct if East Longitude)
Gives Greenwich Mean Time (G.M.T.)
Interval to nearest noon
Logarithm for this interval (Permanent Logarithm)

POSItIONS OF THE PLANETS

Horoscope Data Sheet
Name . . Astrology Class
Place. . . Madison, Wisconsin
43° North
Lat.
Long. . . 89° West.
Birth date $\begin{aligned} & \text { Month September } \\ & \text { Day }\end{aligned}$
Hr. . . 7. . Min.. . 3.2 . . P.M. (Std. Time)
Std. Time

Daylight
Cross out all time zones exce pt your own
True Local Time. . 6:36.p.m.
Calc. Sid. Time.
Nearest Sid. Time
Greenwich Mean Time
Adj. Calc. Date

Birth Date ..September, 21. 2005. . . Hour
43° North

Long.

7:32 $\ldots \ldots$.
89° West

TRUE LOCAL TIME

Birth Hour according to Standard Time. (If Daylight Saving Time in effect, subtract one hour) Degrees birthplace is East or West of Standard Time Meridian in use at birth 1° East Multiply this number of degrees by 4 minutes, equals
(Add if birthplace is East of this Meridian
Subtract if birthplace is West of this Meridian)
Gives True Local Time (T.L.T.) of Birth

SIDEREAL TIME

Sidereal Time (S.T.) at Greenwich for ncon previous to T.L.T. of birth
Correction of 10 seconds for each 15 degrees of Longitude ($10 / 15$ or $2 / 3 \times$ Long.)
(Add if West Longitude. Deduct if East Longitude)
Interval between previous noon and true local time of birth
Add correction of 10 seconds per hour of interval
Gives Sidereal Time (S.T.) at birthplace at birth hour
Nearest S.T. in Tables of Houses

GREENWICH MEAN TIME

True Local Time of Birth
Degrees East or West of Greenwich
Multiply this number of degrees by 4 minutes, equals
(Add, if West Longitude. Deduct if East Longitude)
Gives Greenwich Mean Time (G.M.T.)
Interval to nearest noon
Logarithm for this interval (Permanent Logarithm)
POSITIONS OF THE PLANETS

Horoscope Data Sheet
Name. . Astrology Class
Place. . . Madison, Wisconsin

Lat..... 43° North
Long. . . 89° West.

Hr... 7. . Min. 32 ... P.M. (Std. Time)
Std. Time
Daylight Central
Cross out all time zones exccpt your own
True Local Time. 6:36. p.m.
Calc. Sid. Time 18:39:56
Nearest Sid. Time. 18:39:11
Greenwich Mean Time.
Adj. Calc. Date

SIMPLIFIED SCIENTIFIC TABLES OF HOUSES

Horoscope Data Sheet

Name Astrology Class
Place Madison, Wisconsin

43° North

Lat. . 89° West
Long.

Hr. 7 . . Min.. 32 . . P.M. (Std. Time) Std. Time
 6:36 p.m. 18:39:56
Calc. Sid. Time 18:39:11

Greenwich Mean Time
Adj. Calc. Date

true local time

Birth Hour according to Standard Time. (If Daylight Saving Time in effect, subtract one hour)	.Daylight 1° East
Degrees birthplace is East or West of Standard Time M	
Multiply this number of degrees by 4 minutes, equals	$90^{\circ} \mathrm{W}$
(Add if birthplace is East of this Meridian	
Subtract if birthplace is West of this Meridian)	

Gives True Local Time (T.L.T.) of Birth

SIDEREAL TIME

Sidereal Time (S.T.) at Greenwich for ncon previous to T.L.T. of birth
Correction of 10 seconds for each 15 degrees of Longitude (10/15 or $2 / 3 \times$ Long.)
(Add if West Longitude. Deduct if East Longitude)
Interval between previous noon and true local time of birth
Add correction of 10 seconds per hour of interval
Gives Sidereal Time (S.T.) at birthplace at birth hour
Nearest S.T. in Tables of Houses

GREENWICH MEAN TIME

True Local Time of Birth
Degrees East or West of Greenwich
Multiply this number of degrees by 4 minutes, equals
(Add, if West Longitude. Deduct if East Longitude)
Gives Greenwich Mean Time (G.M.T.)
Interval to nearest noon
Logarithm for this interval (Permanent Logarithm)

POSITIONS OF THE PLANETS

Horoscope Data Sheet
Name Astrology Class Place Madison, Wisconsing 43° Nörth
Lat. . 89° West
Long.

Birth date
 Hr.. Min. . 32. . P.M. (Std. Time) Std. Time
Daylight Central
Cross out all time zones excrpt your own
True Local Time. . 6:36 p.m.
Calc. Sid. Time.3:39:56
Nearest Sid. Time. 18:39:11
Greenwich Mean Time 0:32 a,m. Sept. 22
Adj. Calc. Date

TABLE OF PROPORTIONAL LOGARITHMS

Used for calculating permanent logarithm (page 21) and planetary positions (page 24)

TABLE OF PROPORTIONAL LOGARITHMS

Used for calculating permanent logarithm (page 21) and planetary positions (page 24)

Name Astrology Class . Birth Date . .September, 21. 2005 . . Hour 7:32 P.M.CDT Birthplace . .Madisison, Wisconncoṇ . Lat. 43°. North Long. ... 89 ${ }^{\circ}$ West

TRUE LOCAL TIME
Birth Hour according to Standard Time
(If Daylight Saving Time in effect, subtract one hour)
Degrees birthplace is East or West of Standard Time Meridian in use at birth 10 East Multiply this number of degrees by 4 minutes, equals of. $90^{\circ} \mathrm{W}$
(Add if birthplace is East of this Meridian
Subtract if birthplace is West of this Meridian)
Gives True Local Time (T.L.T.) of Birth

SIDEREAL TIME

Sidereal Time (S.T.) at Greenwich for ncon previous to T.L.T. of birth
Correction of 10 seconds for each 15 degrees of Longitude ($10 / 15$ or $2 / 3 \times$ Long.)
(Add if West Longitude. Deduct if East Longitude)
Interval between previous noon and true local time of birth
Add correction of 10 seconds per hour of interval
Gives Sidereal Time (S.T.) at birthplace at birth hour
Nearest S.T. in Tables of Houses

GREENWICH MEAN TIME

True Local Time of Birth
Degrees East or West of Greenwich__ 89° West
Multiply this number of degrees by 4 minutes, equals
(Add, if West Longitude. Deduct if East Longitude)
Gives Greenwich Mean Time (G.M.T.)
Interval to nearest noon
Logarithm for this interval (Permanent Logarithm)

POSITIONS OF THE PLANETS

	$\begin{gathered} \odot \\ \text { sUN } \end{gathered}$	$\begin{gathered} f \\ \text { VENUS } \end{gathered}$	$\begin{gathered} \not \subset \\ \text { MERCURY } \end{gathered}$	$\begin{gathered} D \\ \text { MOON } \end{gathered}$	$\begin{gathered} \hat{\delta} \\ \text { MARS } \end{gathered}$	Saturn
	ITP	m	\bumpeq	\succ	\succ	S 8/05
	29³4,33"			$27^{\circ} 12$	$22^{\circ} 44^{\prime}$	JUPITER 4
Coming Noon Position (after G.M.T.)	23433	$12{ }^{\circ}$	314	${ }^{2} 12$	22	$\bumpeq 22 / 21$
Previous Noon Position (before CMT)	28³6'53"	$11^{\circ} 19$	$1^{\circ} 27^{\prime}$	$13^{\circ} 52$	22 ${ }^{\circ} 36$	URANUS
Previous Noon Position (before G.M.T.)	$0^{\circ} 57 \times 40$					ғ
Travel in 24 hours	$=0^{\circ} 58$	$1^{\circ} 09$,	$1^{\circ} 47^{\prime}$	$13^{\circ} 20^{\prime}$	$00^{\circ} 08$,) (7/58R
	1.3949	1.3295	1.1290	0.2553	2.2553	$\begin{aligned} & \text { NEPTUNE } \\ & \underset{\Psi}{2} \end{aligned}$
Logarithm of Travel						$\approx 15 / 08 \mathrm{R}$
Permanent Logarithm	0.3208	0.3208	0.3208	0.3208	0.3208	PLuto
Permanent Logar						¢
Sum of Logarithms	1.7157	1.6403	1.4478	0.5761	2.5811	$\chi^{1} \quad 22 / 40$
avel During Interval (Direct planets: add	$0^{\circ} 28$,	$0^{\circ} 33$ '	$0^{\circ} 51$	$6^{\circ} 22$,	$00^{\circ} 04$,	dragon's
to previous noon position if G. M. T. T. is P. M.; deduct from coming noon position if G. M. \dot{T}. is A. M. Rctrograde Planets, reverse this rule.)	T1/ 29/06/3	$M_{1} 11 / 55$	$\bumpeq 2 / 23$	ऽ 20/50	ర 22/40	$\begin{gathered} \text { Head } \\ \delta \end{gathered}$
Positions of planets						

\uparrow Noneone
૪ D 20／50，O＂22／40
II None
σ © None
Ω そ 8／05
TP $\odot 29 / 06 / 33$
$\bumpeq \quad \nvdash 2 / 23,422 / 40$
m_{1} 甲 $11 / 55$
\Varangle 〒 21／56
is None
$\approx \Psi 15 / 08 \mathrm{R}$
H

Used for entering planetary positions（page 26）

